As part of IDSI's mission to stimulate new interdisciplinary research projects of infectious disease dynamics, we are pleased to announce seed grant award recipients. There were many excellent projects submitted in response to this call.
Congratulations to Solomon Kibret Birhanie and Nicholas Rhoades! Their research projects are planned to be featured in an upcoming symposium with a planned date of February 2021.

Nicholas Rhoades
Role of the microbiome and lung immunity in Nontuberculous mycobacterium infection
We are exposed to Nontuberculous mycobacterium (NTM) everyday. For otherwise healthy adults this exposure does not result in any type of infection or harm. However, in the elderly NTM can cause a debilitating pulmonary infection that often requires lifelong multi-drug antibiotic therapy to treat. Although the association between pulmonary NTM infection and age is striking, the mechanisms underlying this dramatic age-related increase in susceptibility are poorly understood. Aging is known to cause changes in our immune system and our microbiome. However, very little is known about how aging changes these factors in our lungs and why this results in NTM infection. In this study, we aim to understand how the lung immune and microbial environment change with age. Additionally, we will profile the immune and microbial response to NTM infection to better understand how age-related defects lead to disease. This study will broaden our understanding of why respiratory infections are more prevalent and severe in the elderly and inform future treatment strategies for NTM infections.

Solomon Kibret Birhanie
Spatio-temporal analysis of malaria risk related to water resources development – linking field and remote sensed data
To combat food insecurity and meet increasing water demands under rapid population growth, water resource development projects are anticipated to rapidly increase in sub-Saharan Africa. At the same time, environmental change related to these projects may have a negative effect on malaria by increasing mosquito vector breeding site availability. Thus, the goal of this project is to improve our understanding of how dams and reservoir water management influence mosquito ecology and how this translates to intensified malaria transmission around water development schemes. The study will help identify landscape factors associated with hotspots of malaria transmission in dam areas using landscape genetics. The study also aims to identify water management strategies for malaria control around dams. The findings from this study will help devise malaria intervention strategies to reduce malaria around dams in Africa.